Self-attention mechanism is an integral component of modern machine learning models such as the Transformers, widely used in natural language processing tasks. It facilitates an understanding of the structure and semantics of the data by allowing models to “pay attention” to specific parts of the input while processing the data. However, explaining this sophisticated concept in simple terms can be a challenge. Let’s try to break it down. Understanding Self-Attention Mechanism Think of self-attention as if you were reading a novel. While reading a page, your brain doesn’t process each word independently. Instead, it understands the context by relating words […]
A Simplified Dive into Language Models: The Case of GPT-4
Introduction Language models have revolutionized the way we interact with machines. They have found applications in various fields, including natural language processing, machine translation, and even in generating human-like text. One of the most advanced language models today is GPT-4, developed by OpenAI. This blog post aims to provide a simplified deep dive into GPT-4, exploring its purpose, use cases, architecture, mechanism, limitations, and future prospects. Purpose of GPT-4 GPT-4, or Generative Pretrained Transformer 4, is a state-of-the-art autoregressive language model that uses deep learning to produce human-like text. It’s the latest iteration in the GPT series, and its primary […]
Friendships of AI: Discovering Hebbian Learning
Hello, dear readers! Today we delve into an intriguing concept in Artificial Intelligence (AI): Hebbian Learning. Borrowing directly from the way our brains function, Hebbian Learning promises to shape the future of AI. Hebbian Theory – The Networking Nature of Our Brains Our brain is a vast network of neurons, with each neuron being an individual in this network. Psychologist Donald Hebb proposed an idea about how this neural ‘social network’ functions. When neurons communicate frequently, their bond strengthens. Just like in human friendships, the more time spent together, the stronger the bond. Hebb summarized this principle as, “Neurons that […]
Deep Dive Into Capsule Networks: Shaping the Future of Deep Learning
In the realm of machine learning, traditional Convolutional Neural Networks (CNNs) have established a strong foothold, contributing significantly to image recognition and processing tasks. However, they’re not without their limitations, such as struggling to account for spatial hierarchies between simple and complex objects, and being heavily dependent on the orientation and size of the object. A newer framework, known as a “Capsule Network” (CapsNet), has been proposed to overcome these challenges. CapsNet, introduced by Geoffrey Hinton, Sara Sabour, and Nicholas Frosst in 2017, takes a different approach to object recognition and offers a promising alternative to CNNs. What are Capsule […]
Unraveling the Mystery of Evolutionary Neural Architecture Search: Simplification, Use Cases, and Overcoming Drawbacks
Introduction Evolutionary Neural Architecture Search (NAS) can be an enigma, even for those well-versed in machine learning and AI fields. Taking inspiration from the Darwinian model of evolution, evolutionary NAS represents a novel approach to optimize neural networks. This post aims to demystify evolutionary NAS, discuss its model mutations, delve into use cases, identify drawbacks, and provide alternatives. The Basics of Evolutionary NAS Just as biological species adapt and evolve over time, neural architectures can also ‘evolve’ to optimize their efficiency and effectiveness. Evolutionary NAS utilizes the principles of evolution—mutation, recombination, and selection—to automatically search for the best neural architecture […]
Fanning the Flames of AI: A Call for Mindful Utilization of Language Learning Models (LLMs)
In the pulsating heart of the digital era, we stand on the cusp of Artificial Intelligence (AI) advancements that appear almost magical in their potential. Large language models (LLMs) like GPT-4 take center stage, embodying our boldest strides into the AI frontier. But as with any frontier, amidst the opportunity and wonder, shadows of uncertainty and fear stir. Some view LLMs as the magician’s wand of the tech universe, casting spells of human-like text generation, language translation, and simulated conversation. Yet, lurking in the dark corners of this magic are specters of potential misuse – hackers, job insecurity, and fears […]
Mitigating Catastrophic Forgetting in Neural Networks: Do Machine Brains Need Sleep?
When it comes to learning, our brains exhibit a unique trait: the ability to accumulate knowledge over time without forgetting the old lessons while learning new ones. This, however, is a big challenge for the digital brains of our era – the artificial neural networks, which face a predicament known as ‘Catastrophic Forgetting’. What is Catastrophic Forgetting? Catastrophic forgetting or catastrophic interference is a phenomenon in the field of artificial intelligence (AI) and machine learning (ML), where a model that has been trained on one task tends to perform poorly on that task after it has been trained on a […]
Neurosymbolic AI: An Unexpected Blend with Promising Potential
Imagine combining two powerful and contrasting AI technologies as one might pair pizza and pineapple. A blend that has sparked both love and disagreement. This is the idea behind Neurosymbolic AI, a novel field that unites the rigid logic of symbolic AI and the adaptive learning prowess of neural networks. To simplify, consider neural networks as quick decision-makers thriving on patterns and massive data but with a struggle to articulate their decisions. Conversely, symbolic AI is akin to an academic whiz that excels in logic, rules, and reasoning but finds it difficult to differentiate an image of a cat from […]
RNN, Vanishing Gradients, and LSTM: A Photo Fiasco Turned Into a Masterpiece
RNNs: The Overzealous Photographer Imagine a Recurrent Neural Network (RNN) as that friend who insists on documenting every single moment of a trip with photos. Every. Single. One. From the half-eaten sandwich at the roadside diner to the blurry squirrel spotted at a distance, nothing escapes the RNN’s camera. It processes and remembers every moment of the journey, just as an RNN processes sequences of data. Vanishing Gradients: When Memory Fails You Now, after days of intense photo-snapping, our overzealous photographer friend tries to recall the events of the first day. But alas! The details are as blurry as that […]
Unpacking the Power of TinyML: The Science Behind the Small
In the realm of Artificial Intelligence (AI), the trend is often towards bigger and better – larger datasets, more powerful processors, and complex models. But what if we could achieve equally meaningful insights with a fraction of the power and size? Welcome to the world of Tiny Machine Learning, or TinyML for short. Let’s dive a little deeper into this fascinating field. What is TinyML? At its core, TinyML is all about deploying machine learning models on resource-constrained, low-power devices like microcontrollers. These are essentially tiny computers embedded in everyday items, from toasters and thermostats to cars and pacemakers. The […]